ENT

PATHWAY TO NET ZERO PROGRESS 2023

Disclaimer

This Report may include forward-looking statements or ones that may be deemed as such. In this Report, forward-looking statements may use words such as 'believe,' 'estimate,' 'plan,' 'expect,' 'forecast,' 'foresee,' 'intend,' 'possibly,' 'probably' and 'should be' in various grammatical forms, as well as statements regarding the strategy, plans, objectives, future events and intentions of the Company.

Forward-looking statements may and often do differ materially from the Company's actual results. All forward-looking statements are to be assessed with regard to risks associated with future events or other factors, unforeseen circumstances and assumptions relating to the Company's operations, results, financial standing, liquidity and prospects for development, growth or strategy. The industry, market and market position data presented in this Report come from either official or independent sources. Sectoral publications, studies and independent source reviews largely assert that the data they contain originates from reliable sources, but there are no guarantees as to the veracity or comprehensiveness of the information provided therein.

Although the Company has a reasonable belief that all such publications, studies and reviews come from reliable sources, neither the Company nor any of its directors, officers, employees, agents, affiliates or consultants have independently verified the information they contain. Additionally, some of the industry, market and market position data in this report are based on internal analyses and research derived from the Company leadership's knowledge and experience. En+ assumes that the information obtained from such analyses and research is accurate, but its accuracy and reliability, as well as the underlying methodology and hypotheses have not been independently verified.

Following the drafting of the Company's Report, external or other factors, such as the geopolitical conflict in Ukraine and sanctions imposed by other countries against the Russian Federation, Russian citizens and Russian companies, could have an impact on the Company's operational and financial results. The Company has no control over these and other factors, which could have an adverse effect on En+'s production capacity.

Table of Contents

+

01	02	03
About the company	Climate agenda of En+	Development of clima regulation
05	06	07
Climate agenda in the aluminium sector	Climate strategy of En+	Low-carbon product I
09	10	11
Partnerships and cooperation	About this report and contact information	Appendix

6 RUSALattributable capacity.

En+ climate agenda

En+ is a global leader among vertically integrated low-carbon aluminium and hydropower producers. In January 2021, En+ was one of the first companies in the aluminium sector to announce its mid- and long-term goals to reduce GHG emissions.

METALS SEGMENT

>99%

aluminium produced using hydropower

ALLOW and **ALLOW Inerta** low-carbon aluminium brands

5 times lower

carbon footprint of ALLOW compared to industry average

POWER SEGMENT

78%

low-carbon energy sources in the installed capacity

Leader

in renewable energy certificate sales in Russia

Acknowledgement of the Companies' efforts to reduce its impact on climate change

In 2023, Yu. A. Izrael Institute of Global Climate and Ecology rated En+ as one of the top companies at Climate efficiency ranking.

- In 2021, RUSAL, Metals segment of the En+, was awarded the 'A-' rating, the highest among aluminium sector companies
- In 2022, En+ released the first consolidated CDP report
- In 2022, En+ and RUSAL reports did not receive CDP ratings, but they are still available to all stakeholders on the CDP and UNGC websites

The En+'s report, 'Pathway to Net Zero 2021,' was highly rated in the Best Climate Report category of the CR Reporting Awards 2022

En+ climate agenda

Federal and regional authorities

Government is tightening up on climate change regulation

The scientific community

The scientific community urges the Company to verify its climate goals and the roadmap towards them

EN

promotes low-carbon development and works with all stakeholders to advance the climate agenda

Customers and suppliers

Customers of the Company require proof that its products have as less negative impact on the environment and climate as possible

Banks, financial institutions, stock exchanges Companies are required to disclose their carbon footprints by stock exchanges

Local residents and employees

Local residents and employees anticipate that the Company will increase transparency and implement efficient programmes to reduce its impact on climate change

Development of climate change regulation

National and international carbon regulations encourage businesses to report GHG emissions and draft strategies to reduce carbon footprint.

Carbon Border Adjustment Mechanism

October 2023	0	Going into effect for aluminium producers
October 2023– December 2025	0	Transition phase. Compulsory GHG emission reporting (Scopes 1 and 2)
January 2026	0	Payments for exceeding the Scope 1 GHG emission threshold (possibly the Scope 2 thresholds as well) will begin. Scope 1 GHG emission threshold: 1.464 t CO ₂ per tonne of aluminium.

Climate change regulation in Russia

July o 2021	Federal Law 'On Limiting GHG Emissions' passed
October 0 2021	' The Strategy of Socio-Economic Development of the Russian Federation with Low GHG Emissions until 2050 ' approved
April o 2022	Regulations for Submitting and Verifying GHG Emission Reports approved. Regulations for Establishing and Maintaining the Registry of Carbon Credits established
September o 2022	Climate experiment in Sakhalin aimed at reducing GHG emissions launched
June 0 2023	The first reporting campaign of issuers on GHG emissions has been completed

Progressing regulation in reporting

June 2023

 Foundation for global sustainability disclosure standards for financial markets, known as IFRS Sustainability Disclosure Standards: General Disclosure Requirements (S1) and Climate-Related Disclosure Requirements (S2), approved by the International Sustainability Standards Board (ISSB)

Scientific context

The scientific community urges companies to verify its climate goals and the roadmap towards them

Science-Based Targets Initiative (SBTi)

The SBTi initiative was started to help businesses set GHG emission reduction goals in accordance with the recommendations provided in the assessment reports from the Intergovernmental Panel on Climate Change (IPCC).

> The Company must set both short- and long-term (no later than 2050) GHG emission reduction goals

KEY **GOAL-SETTING CRITERIA**

Climate goals must span across all three scopes (1, 2 and 3)

The Company must establish a goal to cease the extraction of fossil fuels if it uses them

The verification process of climate goals and roadmap by SBTi

In 2023, En+'s climate goals were updated in accordance with the methodology for science-based targets, and the roadmap was submitted to SBTi for approval with consideration of the current situation and the updated Development Strategy

Climate risk and opportunity assessment

01	02	03
In 2021, the En+ systematised information about its climate risks and opportunities.	Existing mitigation measures were analysed and updated.	The analysis showed that climate risks could affect most facilities of the En+.

The En+'s strategy outlines 3 time horizons for planning:

SHORT-TERM	MID-TERM	LC	ONG-TERM
2023	2025	2030	2050
Risk of fluctuating production or GHG emissions rise due to the adoption of new materials or solutions	TRANSITION RISKS	TRANSITION OPPORTUNITIES	Rising demand for low-carbon products and services Penetrating new and evolving markets
Implementing new regulatory requirements			Utilising more effective production and distribution methods

Used climate scenarios

SSP126 Sustainability

scenario

1.5–2∘c

Friguia Republic of Guinea, Africa Friguia

Ö

Ó

Windalco

Jamaica

Bauxite producer

Ç Q Dian-Dian

Bauxite producer Africa Boké

SSP 245 Middle of the road scenario

2–4∘c

4–7∘c

Fossil Fuel Economy

SSP 585

scenario

Avtozavodskaya CHP Nizhny Novgorod Region Nizhny Novgorod

> β+ <u>ö</u>-Volgograd aluminium smelter Volgograd Region Volgograd

6

BogoslovskyAluminium Smelter Krasnoturyinsk Powder Metallurgy Sverdlovsk Region Krasnoturyinsk

 \bigcirc $\dot{\heartsuit}$

Timan Bauxite

Komi Republic, Ukhta

0

Krasnoyarsk HPP **KrasnoyarskTerritory** Divnogorsk

 \bigcirc

6

CHP-6 Ģ Irkutsk Region Bratsk

6

Kremniy Shelekhov Irkutsk Region Shelekhov

Bauxite and Alumina Complex

Republic of Guinea,

Climate-related risk factors

Abnormal precipitation

🔶 Storms

- (a) Wildfires
- Abnormal heat

Climate goals of global aluminium producers

Company	Global production share ²	Mid-term goal	Baseline year	Net zero, year	Emissions scope
Chinalco	11%	40% by 2035	2025 (expected peak)	-	-
Hongqiao	9%	-	-	2055	-
En+	6%	35% by 2035	2018	2050	1, 2 and 3
Xinfra Group	6%	-	-	-	-
Rio Tinto	5%	15% by 2025, 50% by 2030	2018	2050	1 and 2
Emirates Global Aluminium	4%	-	-	2050	1, 2 and 3
SPIC	4%	-	-	-	-
Vedanta	4%	25% by 2030	2021	2050	1, 2 and 3
East Hope	3%	-	-	-	-
Norsk Hydro	3%	10% by 2025, 30% by 2030	2018	2050	1 and 2
Alcoa	3%	30% by 2025, 50% by 2030	2015	2050	1 and 2

1 IAI, CRU, IEA, IRENA, Goldman Sachs Global Investment Research. Available at: https://www.goldmansachs.com/intelligence/pages/gs-research/solvingaluminiums-climate-paradox/report.pdf

2 Based on the Company's internal data and peer companies' publicly available results, announcements and reports.

Climate agenda in the aluminium sector

The growth of low-carbon aluminium market encourages companies to set climate goals in line with best practices. Sectoral associations and initiatives encourage businesses to develop climate strategies, while also setting standards for these strategies.

International Aluminium Institute (IAI)

Industry Decarbonisation Strategies: Issues and Guidance, a published report by IAI in January 2023, places more emphasis on direct GHG emission reductions (Scope 1 and 2) than indirect emission reductions (Scope 3) and use of carbon credits.

Mitigation hierarchy³

SCOPE1AND2 **Own GHG emissions reduction** SCOPE 3 **Reducing GHG emissions** in the supply chain and product consumption

SCOPE1AND3

Offsetting GHG emissions through carbon units

3 Carbon Offset Guide, Achieving Carbon Neutrality. Available at https://www.offsetguide.org/understanding-carbon-offsets/the-role-of-offsets-in-carbonmanagement-strategies/achieving-carbon-neutrality/

Aluminium Stewardship Initiative (ASI)

In 2022, ASI updated The ASI Performance Standard, which set new requirements, including climate, for obtaining the ASI certificate.

- The Company is to establish climate goals aligned with the 1.5 °C scenario
- The entire value chain's GHG emissions, both direct and indirect, are to be considered in the climate goals

• The Company is to disclose and verify its carbon footprint annually

En+Climate Strategy

2035

Reduce GHG emissions by at least 35% (against 2018 levels)

2050

Achieve net zero GHG emissions

The En+'s mid-term objective has been updated, and the deadline has been moved from 2030 to 2035

In January 2021, En+ announced its mid- and long-term goals to reduce GHG emissions. In May 2023, Board of Directors approved a revision of the mid-term climate goal.

Reasons behind the revision

- Reorganising the Company's operational processes to reflect new circumstances
- Disruption of supply chains and creation of new logistics processes
- Decline in economic activity due to changing geopolitical situation, including reduction of demand from developed countries due to sanctions

- organisations

Key principles

SCOPE	PERIMETER	METHODS	TIMEFRAME	IMPLEMENTATION AREA	COMPLIANCE WITH STANDARDS
 Scope 1 Scope 2 Scope 3 (certain categories) 	Metals segmentPower segment	 Reduction Neutralisation 	 Mid-term: 2035 Long-term: 2050 	 All operations Supply chain Products	ASI StandardsSBTi

Limitation of ties with international

 Postponement of the gasification schedule for Eastern Siberia (originally scheduled for completion by 2030)

 Delivery delays for imported parts and equipment, including due to the withdrawal of foreign equipment suppliers from the Russian market

- Financial market constraints. Influence on capital movement and the ability to secure loans
- Inability to register climate projects in widelyrecognised systems that would guarantee their global acceptance

Decarbonisation roadmap

The effect of decarbonisation measures on the En+'s carbon footprint by 2050 (excluding neutralisation)

USE OF RES CERTIFICATES

Expansion of low-carbon product line

Stakeholders require proof that Company's products are produced with as less environmental and climate change impact as possible. The increase in demand for low-carbon products encourages Company to market products that follow sustainability principles and to broaden its range of low-carbon products.

EN+FUTURE

ALLOW INERTA ALUMINIUM PRODUCT BRAND

- World's lowest carbon footprint
- Independent verification

4,100 t Aluminium with the world's lowest

carbon footprint produced since the pilot launch

0.01 tCO2e/tAl Scope 1 and 2

Expansion of low-carbon product line

The Company is expanding its production capacity of renewable energy sources such as hydro, wind and solar power in response to the growing demand for low-carbon energy. By selling green energy certificates, En+ can increase its revenue and promote the demand for renewable energy.

EN+TODAY

INSTALLED RENEWABLE CAPACITY

15.1 GW

HPP installed capacity

GREEN ENERGY CERTIFICATES

Benefits for customers:

01	02	03
GHG emission offset	Verification of low-carbon energy prigins	Compliance with voluntary Carbo

5.2 MW

SPP installed capacity

Delo Group certificates were first sold in April 2023. Since Delo Group is one of RUSAL's suppliers, the transaction allowed RUSAL to reduce its Scope 3 emissions. **EN+FUTURE**

INSTALLED RENEWABLE CAPACITY

n the national n Zero standard +2.5 GW

total installed capacity of new HPP projects

total installed capacity of new small-scale HPP projects

potential capacity of the wind farm in the Amur Region

Climate initiatives of En+

METALS SEGMENT

- Energy efficiency measures in the alumina division
- CO₂ capture in the alumina division Modernisation of aluminium plants:
- ✓ Switching to Eco-Soderberg technology
- ✓ Switching to pre-baked anode technology
- ✓ Switching to inert anode technology
- Scrap recycling

POWER SEGMENT

- Assessment of GHG emissions balance from HPP reservoirs
- New Energy modernisation programme
- New HPPы construction
- Switching CHPs to gas
- Energy efficiency measures
- Hydrogen transport infrastructure concept development, including cryogenic tank container development

NEUTRALISATION PROJECTS

- Peatland watering
- Reforestation projects
- Carbon Capture, Utilization and Storage (CCUS) technology

Decarbonisation of alumina division

Energy efficiency measures

Measures help to lower both energy intensity and energy consumption.

CO_2 capture in the alumina division

Project status

- Plans for improving energy efficiency at Russian alumina refineries have been developed and approved, that allow to reduce GHG emissions.
- All business units are currently implementing energy efficiency measures. Work is being done in all areas, from streamlining production processes to improving thermal insulation and equipment efficiency.

Alumina refineries

GHG emissions at alumina refineries can be reduced through capture.

Modernisation of aluminium smelters

Switching to Eco-Soderberg

Switching to EcoSoderberg technology allows significantly lower perfluorocarbon emissions during electrolysis.

Project status

Electrolysis

Progress compared to plans for the end of 1H 2023, %

Intensity of GHG emissions from electrolysis for the Metals segment, t CO $_2e/t$ Al

Due to the implementation of a targeted programme to reduce anode paste consumption (reducing CO_2 emissions), as well as the frequency and duration of the anode effect (reducing PFC emissions), the intensity of Scope 1 GHG emissions from the electrolysis was 1.98 t of CO_2e/t of Al by the end of 1H 2023, a 13.2% decrease from 2014 levels.

Modernisation of aluminium smelters

Switching to pre-baked anode technology

Switching pots to pre-baked anode technology at select facilities allows to reduce GHG emissions from electrolysis by at least 25%.

Project status

- The project documentation has been drafted, and an analysis of the modernisation projects' effects on the environment has begun.
- State environmental assessment has given the modernisation projects of BrAZ and KraZ favourable reviews.
- Glavgosekspertiza has given the modernisation project of BrAZ favourable reviews.
- Planned for switching as part of the modernisation project:
- -KrAZ: 535,000 tonnes of raw aluminium per year
- BrAZ: 535,000 tonnes of raw aluminium per year
- IrkAZ: 235,000 tonnes of raw aluminium per year
- NkAZ: 75,000 tonnes of raw aluminium per year
- Pre-baked anode technology-based Taishet AS has begun operation in commissioning mode.

Electrolysis

27% Share in the En+'s carbon footprint

by **15**%

Reduction in GHG emissions by 2025 against 2014 levels

Switching to inert anode technology

Switching to inert and
GIG emissions during
PERIOD
PROGRESS

Project status

ode technology will fully eradicate g aluminium electrolysis.

>	2050
	4,900

• Technical and technological solutions are being tested on the experimental inert-anode aluminium electrolysis facility for technology scaling.

• The carbon footprint of ALLOW Inerta aluminium produced by inert anode technology has been verified by TÜV Austria Standards & Compliance to be 0.01 t of CO₂e./t of Al, with both direct and indirect energy emissions (Scope 1 and 2).

4,100 t

aluminium with the world's lowest carbon footprint produced since the pilot launch

0.01t CO₂e

GHG emissions per tonne of aluminium, both direct and indirect emissions (Scope 1 and 2)

Assessment of GHG emissions balance of HPP reservoirs

In 2019, a method for calculating GHG emissions from HPP reservoirs was approved by IPCC. Since 2020, the En+ has been conducting instrumental measurements using internationallyaccepted methods to ensure accurate calculations.

Project status

- In 2022, instrumental measurements of GHG emissions from the reservoirs of the Bratsk and Irkutsk HPPs were taken as part of a long-term programme to ensure the comparability and accuracy of earlier measurements.
- The obtained emission coefficients are among the lowest in the average global values range for boreal reservoirs.
- In 2023, based on the research findings, the development of national GHG emission coefficients using the Tier 2 method was initiated. These factors, established with the input from the Institute of Global Climate and Ecology, will be used in the national GHG emissions inventory.

HPP generation

<1%

Share in the En+'s carbon footprint

Boosting the RES share. Hydropower development

New Energy modernisation programme

The programme's goal is to increase power generation at existing HPPs to replace energy generated by CHPs.

Project status

- Irkutsk HPP: A new hydropower unit was launched in 2022.
- Bratsk HPP: Two runners were replaced in 2022 and 1H 2023; work is ongoing to replace another one.
- Krasnoyarsk HPP: Two runners were replaced in 2022; another runner and a transformer were replaced in 1H 2023; work on replacing the next (sixth) impeller will commence in 2H 2023.

Increase in power output, GWh

Avoided emissions, mnt CO₂e

New HPP construction

Project status

- Work is underway at to construct headra dig the pit for the ma scheduled for 2024.
- The Nizhnebogucha Telmamskaya HPP p development stage associated with the sources, as well as th and the environmer
- The Motyginskaya H involved in the greer

HPP GENERATION

Share in the En+'s carbon footprint

Electrical

Hydropower development supports regional socio-economic development and is consistent with Russia's low-carbon development strategy.

→ 2050

		power, MW	oflaunch
t the small-scale Segozerskaya HPP ce and tailrace canals, as well as to ain HPP building. Commissioning is	Segozerskaya HPP Republicof Karelia	8.1	2024
ny, Motyginskaya, Krapiva and	Telmamskaya HPP Irkutsk Region	450	2031
projects are at various s at the moment. Risks projects' potential financing	Nizhneboguchany HPP Krasnoyarsk Territory	660	2032
neir potential effects on society nt, are being evaluated.	Krapiva HPP Kemerovo Region	345	2030
IPP construction project is n hydrogen development plan.	Motyginskaya HPP Krasnoyarsk Territory	1,082	-

CHP decarbonisation and energy efficiency measures

Switching CHPs to gas

The most promising way to significantly reduce GHG emissions and address the environmental problems in the Irkutsk region is to switch CHPs to natural gas.

PERIOD	→ 2050
PROGRESS	

Project status

- Gasification of the region depends on the decision of the state and significant investments in gas distribution infrastructure and modernisation of. CHPs.
- A feasibility assessment of the project is being conducted, including discussions with the government authorities.
- Company is expecting solution of both the tariff size and social issue of monotowns, which are dependent on coal mining used at CHPs.

CHP generation

34%

Share in the En+'s carbon footprint

Energy efficiency measures

Reduction of GHG em efficiency improvemen generation.
PERIOD
PROGRESS

Project status

- electricity and heat losses.
- 207.2 ^{min} kWh

Energy savings obtained through the implementation of the Energy Efficiency Improvement Program at JSC IESK from 2021 to 2022

nissions in the Power segment is tied to energy ents in both energy resource transportation and power

→ 2050

• The Power segment implements technical and organisational measures to reduce energy consumption, as well as

mln kWh

Energy savings obtained through the implementation of energy-saving measures in the first half of 2023 at Baikal Energy Company LLC

Hydrogen development

Development of cryogenic tank container

Transportation of luiquid hydrogen over long distances is significant unresolved obstacle, which project is going to solve.

Development of hydrogen transport infrastracture concept

A comprehensive project to build Russia's infrastructure for hydrogenbased passenger transportation. Trial regions: Krasnoyarsk, Irkutsk.

Project status

- Market evaluation was conducted.
- Layout of the technological line for the small series production was developed.
- R&D of the design of tank containers is being conducted.

Project status

- Preliminary feasibility study for the Krasnoyarsk project was completed.
- A public-private partnership (attraction of subsidies) viability is being assessed.
- Partnership agreements are currently being negotiated with bus and fuel cell manufacturers.
- A discussion on the procurement of low-capacity pots (200 m3/h), 45–70 MPa compressors and dispensers from Russian and Chinese suppliers for use in filling stations is ongoing.

Hydrogen production

Hydrogen is essential for decarbonisation of industries where it is challenging to reduce emissions through the supply of carbon-neutral fuel and raw materials.

Project status

 The En+ is looking into projects relating to hydrogen transportation and usage technologies in light of export market restrictions and technology accessibility.

Projects to reduce Scope 3 emissions

Transportation

Cooperation with service providers to reduce GHG emissions helps to reduce aluminium's carbon footprint throughout the production chain.

Project status

- RUSAL and TransContainer PJSC signed an agreement in 2021 outlining their intention to cooperate strategically to advance low-carbon logistics. The parties committed to the joint development and implementation of new low-carbon technologies for the transportation of raw materials and aluminium products in a bid to reduce GHG emissions.
- In April 2023, En+ sold certificates to Delo Group. Since Delo Group is one of RUSAL's suppliers, the transaction allowed RUSAL to reduce its Scope 3 GHG emissions.

Recycling

PERIOD	
PROGRESS	

Project status

CLOSE SCRAP LOOP

- •
- · Circular economy promotion in Russia.

ADDING RECYCLED CONTENT DURING **BILLET AND SLAB PRODUCTION AT KUBAL**

- completed.
- life scrap initiated.

Involving scrap during the production process enables the following:

• a significant reduction in GHG emissions during the production of aluminium alloys

• promotion of sustainability principles and development of circular economy

→ 2050

Close extrusion process scrap loop at VgAZ.

Pilot phase for adding process scrap during alloy production

Investment project to add up to 20% of process and end-of-

PRIMARY FOUNDRY ALLOYS WITH ADDED RECYCLED CONTENT FOR THE **AUTOMOTIVE SECTOR**

- 20–40% recycled content.
- Only end-of-life scrap is used.
- Carbon footprint of alloy was reduced by 20-30% compared to primary metal.

Neutralisation

Irrigation of previously drained peatlands

In 2023, the Metals segment launched a pilot project to water peatlands that had been previously drained, working with partners to reduce emissions, increase GHG absorption, ensure fire safety and support biodiversity preservation.

Project status

initiatives that emphasise efficient forest management.

- The En+'s efforts to offset its emissions, which
- for technical and financial reasons cannot yet be eliminated,
- are essential to achieve the global goal of combating climate change.

→ 2050

• There are plans to launch new forestry and climate

505,000 hectares

Are under aerial forest protection in the Krasnoyarsk Territory

1.1 million

trees planted in the Krasnoyarsk Territory and the Irkutsk Region

offset annually

Neutralisation

with partners in order to identify potential sites for CO_2 storage and disposal. An NDA is being signed to proceed with the works.

CO₂ disposal potential in the Irkutsk Region

Partnerships and cooperation

En+ contributes to the development of the national and global climate agenda through cooperation with a variety of organisations.

En+and RUSAL's **experience** in reducing GHG emissions was regularly noted as best practices by the Carbon Pricing Leadership Coalition in their annual reports.

ENERGY COMPACTS UN

En+ stays involved in the UN Energy Compact initiative, updating information on projects related to commitments to increase the clean power production and promote universal access toit

Involvement and membership in organisations

UN Global Compact

International Aluminium Institute

National ESG Alliance

Aluminium Stewardship Initiative

Climate Partnership of Russia

Carbon Pricing Leadership Coalition under the auspices of the World Bank

Business 20

BRICS Business Council

27

About this report and contact information

Purpose of the Report	Demostrate En+'s progress towards net zero
Report frequency	Yearly
Guidelines	The Report complies ISO Net Zero Guidelines

Net zero strategy, 2021

Progress towards net zero, 2022

En+ Group

How to build a low-carbon future: En+ Group on the way towards carbon neutrality

For feedback, comments, or inquiries

10

For investors, analysts and rating agencies

Investor relations and ESG ir@enplus.ru

For sustainability-related cooperation

Sustainable development directorate csr@enplus.ru

For media inquiries

Public relations directorate press-center@enplus.ru

Visit our website for climate-related reports: https://enplusgroup.com/ru/sustainability/downloads/

11 — APPENDIX

En+'s carbon footprint

Consolidation perimeter

The Company and its subsidiaries, which are included in the En+'s consolidated financial statements, compiled in accordance with IFRS, that have a significant impact on sustainable development indicators.

Verification

During the audit of sustainability-related information from Consolidated report, the quantitative data on GHG emissions underwent independent verification by B1 and TÜV Austria.

Data collection and calculation methods

The calculation was done based on the Greenhouse Gas Protocol. In accordance with the Greenhouse Gas Protocol's Corporate Value Chain accounting standard (Scope 3), the Company accounts for GHG emissions under Scope 3 caused by the production and transportation of fossil fuels.

Dynamics explanation

2021 vs 2020: +0.6%

Increase in GHG emissions in Metals segment was due to perimeter expansion. Increase in GHG emissions in Power segment was due to extention of heating season, requiring more heat supply.

2022 vs 2021: +6%

Increase in GHG emissions in Power segment was due to reduction of HPP generation, which wa compensated by an increase in electricity generation at CHPs.

Direct (Scope 1) GHG emissions by component, %

	2020	2021	2022
CO 2	96.3	96.3	96.6
CH4	0.6	0.6	0.6
N2 O	0.3	0.3	0.3
PERFLUORO- CARBON	2.8	2.8	2.5

En+'s direct (Scope 1) and indirect (Scope 2 and 3) GHG emissions, mt CO₂e

Carbon footprint of En+ (Scope 1, 2 and 3), 2022, %

